

 Navigation

 	
 index

 	
 next |

 	match3d 0.0.1 documentation

match3d

match3d is an extension for our
image matching library. It allows
you to store and search 3D models (STL files) for similar designs.

Contents

	Installation
	Manual setup

	Using Docker

	Basic usage
	API operations

	About Image Match Generator
	Prerequisites

	Assumptions

	Example 1

	Command Line Arguments

	Generating Images for the Database

	Generating Images for Search

	Getting Help from the Command Line

	Generator of Images for Humans
	Overview

	Usage

	Documentation
	Building the documentation

	Viewing the documentation

	Making changes

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Ryan Henderson.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	match3d 0.0.1 documentation

Installation

We hope to streamline the setup process soon. In the meantime, you follow the
Manual setup, or use Using Docker.

Manual setup

image-match

You will need image-match [https://github.com/ascribe/image-match] installed. Follow the install directions in the
link. Along the way you will get elasticsearch and the scientific python
libraries set up.

blender

3D-match uses blender [https://www.blender.org/] for rendering. The blender packages are out-of-date on
Ubuntu 15.10, so to be safe install blender as explained
here [http://tipsonubuntu.com/2015/04/03/install-blender-2-74-ubuntu-14-04linux-mint-17/]:

$ sudo add-apt-repository ppa:thomas-schiex/blender
$ sudo apt-get update
$ sudo apt-get install blender

match3d

To install match3d along with its python dependencies:

$ pip install -e .

Using Docker

Run elasticsearch:

$ docker-compose up -d es

Then to start an ipython session:

$ docker-compose run --rm m3d ipython

 Copyright 2016, Ryan Henderson.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	match3d 0.0.1 documentation

Basic usage

match3d is essentially a collection of blender scripts for generating views
of 3D models, and Python scripts for turning those into something searchable by
image-match.

API operations

The most important functionality is provided in api_operations.py.

from match3d.api_operations import APIOperations
api = APIOperations(index_name='3d_test')

index_name is the name of the elasticsearch index to use. Defaults to
match3d if none is specified.

ADD

You can add a model from URL or local file. You must specify some kind of label
either way. Label uniqueness isn´t enforced (yet), but duplicate labels will be
ignored in searches:

api.add('human', stl_url='http://people.sc.fsu.edu/~jburkardt/data/stla/humanoid_tri.stl')
api.add('human_other', stl_url='http://people.sc.fsu.edu/~jburkardt/data/stla/humanoid.stl')

Some more example STL files [http://www.eng.nus.edu.sg/LCEL/RP/u21/wwwroot/stl_library.htm]. For example, download and unzip the Porsche,
then:

api.add('porsche', stl_file='/home/ryan/Downloads/porsche.stl')

SEARCH

Search the renderings of different objects and the score of the single best
view. Lower numbers are better matches.

api.search(stl_file='/home/ryan/Downloads/porsche.stl')

Gives the result:

{'/home/ryan/Downloads/porsche.stl':
 {
 u'human_other': 0.44157460914354879,
 u'porsche': 0.0
 }
}

Or:

api.search('http://people.sc.fsu.edu/~jburkardt/data/stla/humanoid.stl')

gives:

{'http://people.sc.fsu.edu/~jburkardt/data/stla/humanoid.stl':
 {
 u'human': 0.13292872986279264,
 u'human_other': 0.0,
 u'porsche': 0.24738691224575407}
}

LIST

api.list_designs()

returns

[u'porsche', u'human_other', u'human']

 Copyright 2016, Ryan Henderson.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	match3d 0.0.1 documentation

About Image Match Generator

The purpose of Image Match Generator is to make a set of “standard” images of a
3D object. Other sofware converts those images to image signatures. Image
signatures can be stored in a database. Given a new image signature, one can
find similar image signatures in the database.

Prerequisites

To use Image Match Generator, you need to install Blender 2.74 or later.

image_match_generator.py is a Python script but you don’t need to
install Python to use it. That’s because Blender comes bundled with a version
of Python (currently Python 3.4) and it uses that.

Assumptions

All 3D objects are assumed to be modeled using STL files. Those STL files are
assumed to be in subdirectories of a directory.

image_match_generator.py has a command-line interface.

Example 1

The simplest use of image_match_generator.py has the form:

$ blender -b -P image_match_generator.py -- -d ~/stl_set_a/ -o test_output/

	blender -b launches Blender in the background (rather than launching the
Blender GUI).

	-P image_match_generator.py tells Blender to run the Python script named
image_match_generator.py.

	The double dash (--) indicates the beginning of the arguments for the
Python script (i.e. not for Blender).

	-d ~/stl_set_a/ tells the Python script that the directory with
subdirectories containing STL files is ~/stl_set_a/.

	-o test_output/ tells the Python script that the generated images should
be written to the directory test_output. If that directory doesn’t exist,
it will be created.

In this case, 48 images get generated, plus a report file named
image_match_generator_report.csv. Each generated image file will have a
filename similar to:

cf4a7d5060943dd196b1e34fb6cfbf74.2.3.back.1.png

Here’s what that filename means:

	cf4a7d5060943dd196b1e34fb6cfbf74 is a hash of the name of the directory
containing the STL file (not the name of the STL file).

	The .2 following that means the camera was at one end of eigenvector 2.
Eigenvector 0, 1, and 2 are the three eigenvectors of the moment of inertia
matrix of the object (treating it as a hollow shell). That is, they are the
three principal axes.

	The .3 following that means the object was rotated by \(3/4\) of a
full rotation (\(270\) degrees). That slot can have the values \(0\),
\(1\), \(2\), and \(3\).

	The .back means the camera was at the back end of the eigenvector, not
the front end.

	The .1 means the the object was reflected. If it had been .0 then
that would mean it wasn’t reflected.

Command Line Arguments

Image Resolution

The default image resolution is 1024px by 1024px, but that can be changed using
the --resolution RESOLUTION argument. For example, to render images that are
200px by 200px, use something like:

$ blender -b -P image_match_generator.py -- -d ~/stl_set_a/ -o test_output/ --resolution 200

Turning off Rotations, Front+Back, and/or Reflections

By default, for each of the three eigenvectors, both the front and back view
will be generated, and for each of those four rotations will be generated, and
for each of those two reflections will be generated. That makes
\(3 x 2 x 4 x 2 = 48\) images total. You can turn off any or all of
front+back, rotations, or reflections using the following flags:

--no-rotations
--only-front-view
--no-reflections

You can use one, two, or all three of those flags together. For example, here’s
how you’d use all three, so only three images would be generated (the front
view of three eigenvectors):

$ blender -b -P image_match_generator.py -- -d ~/stl_set_a/ -o test_output/ --no-rotations --only-front-view --no-reflections

Turning off Image Transforms

By default, Blender isn’t used to render every image, because rendering is
computationally expensive. Instead, whenever possible, image rotations or image
reflections are used instead. Collectively, those are known as image
transforms. You can turn off image transforms using the
--no-image-transforms flag. If you do, every image will be generated by
reflecting or rotating the object, rendering that object, and then unrotating
and unreflecting the object as necessary.

Generating Images for the Database

When generating images for the database, you want all 48 images, so just call
image_match_generator.py as in the simplest use case.

Generating Images for Search

When generating images for search, you only need a small number of images, say
three or six.

Getting Help from the Command Line

To get help with Image Match Generator from the command line, use

$ blender -b -P image_match_generator.py -- -h

Here’s the current output:

usage: blender [-h] [--resolution RESOLUTION] [--no-rotations]
 [--only-front-view] [--no-reflections] [--no-image-transforms]
 d o

Generate oriented images for image matching

positional arguments:
 d directory containing STL files
 o directory where to put images

optional arguments:
 -h, --help show this help message and exit
 --resolution RESOLUTION
 resolution of renderings (n x n)
 --no-rotations do not generate rotations
 --only-front-view only generate front views
 --no-reflections do not generate reflections
 --no-image-transforms
 generate all images by rendering

 Copyright 2016, Ryan Henderson.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	match3d 0.0.1 documentation

Generator of Images for Humans

Overview

This Python Blender script produces images, one image per STL file, showing
nine renderings of the 3D object pasted into a single image as a \(3x3\)
collage. The idea is to have one image that can give a human a good sense of
what the 3D object is. The camera positions are chosen to be fairly evenly
distributed on a sphere (not randomly).

Usage

Example usage:

$ blender -b -P generate_images_for_humans.py -- -d ~/Documents/ascribe/cad_files/testset1/ -o test_out_dir

The -d argument is the directory containing subdirectories which contain
STL files. All of those subdirectories will be scanned and the STL file they
contain will be rendered.

The -o argument is the output directory where all the final images will be
saved. If that directory doesn’t exist yet, it will be created. Each image is
named after the parent directory of the associated STL file.

Note that we’re assuming that each subdirectory contains only one STL file.

 Copyright 2016, Ryan Henderson.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	match3d 0.0.1 documentation

Documentation

This section contains instructions to build and view the documentation locally,
using the docker-compose.yml file of the image-match repository:
https://github.com/ascribe/3d-match.

If you do not have a clone of the repo, you need to get one.

Building the documentation

To build the docs, simply run

$ docker-compose up bdocs

Or if you prefer, start a bash session,

$ docker-compose run --rm bdocs bash

and build the docs:

root@a651959a1f2d:/usr/src/app/docs# make html

Viewing the documentation

You can start a little web server to view the docs at http://localhost:50080/

$ docker-compose up -d vdocs

Note

If you are using docker-machine you need to replace localhost
with the ip of the machine (e.g.: docker-machine ip tm if your
machine is named tm).

Making changes

The necessary source code is mounted, which allows you to make modifications,
and view the changes by simply re-building the docs, and refreshing the
browser.

 Copyright 2016, Ryan Henderson.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	match3d 0.0.1 documentation

Index

 Copyright 2016, Ryan Henderson.
 Created using Sphinx 1.3.5.

 _static/plus.png

search.html

 Navigation

 		
 index

 		match3d 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Ryan Henderson.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

